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Abstract

In this article we exploit the properties of nonlinear convex real-analytic functions to
sharpen a sublinear convergence rate to a linear convergence rate. Numerical experiments
corroborate this theorem.
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1 Introduction

In this article we study optimization problems of the form

minimize
x∈X

f(x), (1.1)

where f : D → R is a smooth objective function defined on an open set D ⊆ Rn, and X ⊆ D is
a non-empty closed feasible set. The set of minimizers is denoted by X ⋆. In [JYK21; Jon21] the
authors exploit real-analyticity of the objective to derive an imaginary zeroth-order optimization
framework that is particularly well applicable to convex optimization problems. However, the fact
that the objective is real-analytic can be further exploited in the convergence analysis. In this work
we will show that convex optimization with real-analytic objective functions becomes effectively
optimization with strongly convex objective functions.

Consider the metric space (Rn, ∥ · ∥2) and let U ⊆ Rn be open and non-empty. Consider some
real-analytic function f ∈ Cω(U) with p⋆ ∈ U being a critical point of f , that is, ∇f(p⋆) = 0.
Then the  Lojasiewicz inequality says that there is a rational constant θ ∈ [ 12 , 1), a constant
C ≥ 0 and a set W ⊆ U such that

|f(x) − f(p⋆)|θ ≤ C∥∇f(x)∥2 ∀x ∈ W. (1.2)

Example 1.1 (The scalar case of (1.2)). ...

An instance of the  Lojasiewicz inequality, independently due to Polyak [Pol63], is often ex-
ploited in optimization, that is, for τ -strongly convex functions one can show that the Polyak-
 Lojasiewicz inequality (PL inequality) ∥∇f(x)∥22 ≥ 2λ(f(x) − f(p)) holds with λ = τ [Nes03,
Equation 2.1.19].

We will use this type of inequalities to improve upon the convergence rate for convex real-
analytic functions as given in [JYK21, Theorem 4.1]. In particular, we use (1.2) and the proof
of [JYK21, Theorem 5.1].
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If f : X → R is convex and satisfies the PL inequality for some λ, then f satisfies the quadratic
growth (QG) condition

f(x) − f(x⋆) ≥ λ

2
∥x− x⋆∥22 (1.3)

for all x ∈ X , which is weaker than strong convexity [KNS16, Theorem 2]. The QG condition in
combination with convexity goes by the name of “optimal strong convexity” [LW15]. In particular,
if X ⋆ is not merely a singleton, (1.3) becomes

f(x) − f(PX⋆(x)) ≥ λ

2
∥x− PX⋆(x)∥22, (1.4)

for PX⋆(·) the projection operator onto X ⋆, which is sometimes written simply as xp.
Exactly the condition (1.3) is used in the proof of [JYK21, Theorem 5.1]. As such, analyzing

convex optimization with f ∈ Cω should be akin to strongly convex optimization.

Example 1.2 (Convex real-analytic). The following functions are convex and real-analytic, but
not strongly convex.

(i) f : R2 → R defined by f(x) = (x1 + x2)2.

(ii) f : Rn → R defined by f(x) = 0 ∀x ∈ Rn.

(iii) f : Rn → R defined by f(x) = ∥Ax− b∥22 with ker(A) ̸= {0}.

(iv) ...

(v) ...

[We can have more example functions]

1.1 Related work Zeroth-order optimization is particularly suitable for simulation-based and data-
driven optimal control problem cf. [Faz+18]. ...

1.2 Contributions By analyzing the set of nonlinear convex real-analytic functions we are able to
sharpen the sublinear rate of the form O(K−1), as proven in [JYK21, Theorem 4.1], to a linear
rate of the form O(αK) for some α ∈ (0, 1).

2 Notions of regularity

A function is said to be Ck-smooth when it is k times continuously differentiable. We highlight a
stronger regularity notion of great importance in this article.

Definition 2.1 (Real analytic function). The function f : D → R is real analytic on D ⊆ Rn if
for every x′ ∈ D there exist fα ∈ R, α ∈ Zn

+, and an open set U ⊆ D containing x′ such that

f(x) =
∑

α∈Zn
+
fα · (x− x′)α ∀x ∈ U. (2.1)

We use Cω(D) to denote the family of all real analytic functions on D.

Indeed, the power series representation (2.1) corresponds to the Taylor series of f around x′.

Using the notation from [Nes03] a function f is said to be Ck,r
L (D)-smooth when f is k times

continuously differentiable with additionally having its rth-derivative being L-Lipschitz over some
open set D ⊆ Rn. Here, k is an element of N≥0 ∪ {∞} ∪ {ω}. That is, if f ∈ C1,1

L1(f)
(D), then, f

has a Lipschitz gradient , i.e.,

∥∇f(x) −∇f(y)∥2 ≤ L1(f)∥x− y∥2, ∀x, y ∈ D. (2.2)
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which is equivalent [NS17, Equation (6)] to the inequality

|f(y) − f(x) − ⟨∇f(x), y − x⟩| ≤ 1
2L1∥x− y∥22 ∀x, y ∈ D. (2.3)

Similarly, if f ∈ C2,2
L2(f)

(D), then, f has a Lipschitz Hessian , i.e.,

∥∇2f(x) −∇2f(y)∥2 ≤ L2(f)∥x− y∥2 ∀x, y ∈ D. (2.4)

Then, Consider the setting of f ∈ Cω(D) being τ(f)-strongly convex over D, i.e., there is
some τ(f) > 0 such that

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ + 1
2τ(f)∥y − x∥22, ∀x, y ∈ D. (2.5)

In particular (2.5) implies that for D such that x⋆ ∈ int(D) one has

f(x) − f(x⋆) ≥ 1
2τ(f)∥x− x⋆∥22, ∀x ∈ D. (2.6)

If additionally f ∈ Cω,1
L1(f)

, then by the PL-condition ∥∇f(x)∥22 ≥ 2τ(f)(f(x) − f(x⋆)) [Nes03,

Equation 2.1.19] one has

τ(f)∥x− x⋆∥2 ≤ ∥∇f(x)∥2 ≤ L1(f)∥x− x⋆∥2. (2.7)

3 Zeroth-order algorithm

First we recall the imaginary zeroth-order optimization framework from [JYK21; Jon21].

3.1 Imaginary gradient estimation To make sure that the gradient estimator is well-defined we
assume the following.

Assumption 3.1 (Analytic extension). The objective function f : D → R of problem (1.1) admits
an analytic extension to the strip D × i · (−δ̄, δ̄)n for some δ̄ ∈ (0, 1).

Now the gradient estimator is constructed via a surrogate function fδ of f , which is defined as

fδ(x) = V −1
n

∫
Bn ℜ

(
f(x+ iδy)

)
dy. (3.1)

Here, δ ∈ (0, δ̄) is the radius of the ball we smooth over. It turns out that the gradient of fδ has a
representation particularly suitable for a zeroth-order optimization framework.

Proposition 3.2 (Gradient of the smoothed complex-step function [JYK21, Proposition 3.3]). If
f ∈ Cω(D) satisfies Assumption 3.1, then fδ defined as in (3.1) is differentiable, and we have

∇fδ(x) =
n

δ
Ey∼σ [ℑ (f(x+ iδy)) y] ∀x ∈ D, δ ∈ (0, δ̄), (3.2)

where σ denotes the uniform distribution on Sn−1.

Differently put, by Proposition 3.2 we find that the gradient of fδ admits the unbiased single-
point estimator

gδ(x) =
n

δ
ℑ (f(x+ iδy)) y with y ∼ σ. (3.3)

This estimator has been analyzed in [JYK21; Jon21]. We will analyze (3.3) in an algorithm akin
to gradient descent.
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Algorithm 1 Imaginary zeroth-order optimization

1: Input: initial iterate x1 ∈ X , stepsizes {µk}k∈N, smoothing parameters {δk}k∈N
2: for k = 1, 2, . . . ,K − 1 do
3: sample yk ∼ σ
4: set gδk(xk) = n

δk
ℑ (f(xk + iδkyk)) yk

5: set xk+1 = ΠX (xk − µk gδk(xk))
6: end for
7: Output: last iterate xK

3.2 Algorithm and convergence proof In the remainder we will assume that the iterates {xk}k∈N
generated by Algorithm 1 as well as all directional samples {yk}k∈N and the corresponding gradient
estimators {gδk(xk)}k∈N represent random objects on an abstract filtered probability space (Ω,F , {Fk}k∈N,P),
where Fk denotes the σ-algebra generated by the independent and identically distributed (i.i.d.)
samples y1, . . . , yk−1. Hence, xk is Fk-measurable. We let E[·] denote the expectation operator
with respect to P.

Now we continue with formalizing what was alluded to the introduction. To that end, we
assume the following.

Assumption 3.3 (Nonlinearity). The objective function f ∈ Cω(D) of problem (1.1) is such that
for all x⋆ ∈ X and any y ∈ Sn−1 the function ∂2t f(x⋆ + ty) is not identically 0.

Note that Assumption 3.3 admits a variety of formulations. This assumption effectively rules
out affine functions.

In what follows, let µn denote the Lebesgue measure on Rn.

Lemma 3.4. Suppose that f ∈ Cω(D) is convex and satisfies Assumption 3.3. Then, there is an
open neighbourhood W ⊆ D of X ⋆ such that for µn-a.e. x ∈ W (1.2) holds with θ = 1

2 .

Proof (sketch). As f ∈ Cω, f satisfies (1.2) for some θ. Moreover, as f ∈ Cω we know that for all
x ∈ X ⋆ the function ∂2t f(x⋆ + ty), for any y ∈ Sn−1, is either identically zero, or µn-a.s. non-zero,
the former being impossible by assumption. This however means that, at least locally, (1.2) must
hold with θ = 1

2 for almost every x in some neighbourhood of x⋆.

An important ramification of Lemma 3.4 is that under those conditions the quadratic growth
condition (1.3) holds for µn-a.e. x ∈ W. This follows directly from the proofs in [KNS16]. Note
that even for f being convex, one cannot always extend the domain of (1.2) from W to D cf. (4.1).

Now we have the machinery to generalize the rate from [JYK21, Theorem 5.1] to merely (non-
linear) convex functions.

Theorem 3.5 (Convergence rate of Algorithm 1 for convex optimization). Suppose that f ∈
Cω(D) is a convex function satisfying Assumption 3.1 and Assumption 3.3 as well as the Lipschitz
conditions (2.2) and (2.4) with L1 > 0 and L2 ≥ 0. Also assume that X has non-empty interior, is
closed and convex, that ∇f(x⋆) = 0 ∀x⋆ ∈ X ⋆ and that X ⊆ W, for W as in Lemma 3.4. Denote
by {xk}k∈N the iterates generated by Algorithm 1 with constant stepsize µk = µ = 1/(2nL1)
and adaptive smoothing parameter δk ∈ (0, κδ̄] for all k ∈ N, where κ ∈ (0, 1), and define R =
∥x1 − x⋆∥2. If δk = δ/k for all k ∈ N, then, there is a constant C ≥ 0 and a λ ∈ (0, L1] such that
the following inequality holds for all K ∈ N

E[f(xK) − f(x⋆)] ≤ 1
2L1

(
δ2C +

(
1 − λ

4nL1

)K−1 (
R2 − δ2C

))
. (3.4)

A semi-explicit formula for C in terms of n, L1, L2 and τ is derived in the proof of Theorem 3.5.
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Proof. As illustrated in the introduction, we can proceed as in the proof of [JYK21, Theorem 5.1].
To start, as in the proof of [JYK21, Theorem 4.1], we set C1 = 3( 1

6L2 + Cκ) and rk = ∥xk − x⋆∥2
for all k ∈ N, and we initially assume that X = D. Now, as xk ∈ W, then, combining [JYK21,
Equation (4.1)] from the proof of [JYK21, Theorem 4.1], that is,

E
[
r2k+1

∣∣Fk

]
≤ r2k − µ (f(xk) − f(x⋆)) + nµδ2kC1rk + µ2n2C2

1δ
4
k. (3.5)

with the QG condition (1.3), which we can do by Lemma 3.4 for µ-a.e. xk ∈ W, yields

E
[
r2k+1|Fk

]
≤

(
1 − µλ

2

)
r2k + µC1nδ

2
krk + µ2C2

1n
2δ4k,

for some λ > 0. By taking unconditional expectations, and applying Jensen’s inequality, we then
find

E[r2k+1] ≤
(

1 − µλ
2

)
E[r2k] + µC1nδ

2
k

√
E[r2k] + µ2C2

1n
2δ4k (3.6a)

≤ E[r2k] + µC1nδ
2
k

√
E[r2k] + µ2C2

1n
2δ4k. (3.6b)

Note, the latter inequality holds regardless of xk ∈ W. Next, choose any k′ ∈ N and sum the above
inequalities over all k ≤ k′ − 1 to obtain

E[r2k′ ] ≤ r21 + µC1n
∑k′−1

k=1 δ
2
k

√
E[r2k] + µ2C2

1n
2
∑k′−1

k=1 δ
4
k

≤ r21 + µC1n
∑k′

k=1 δ
2
k

√
E[r2k] + µ2C2

1n
2
∑k′

k=1 δ
4
k.

By using the same reasoning as in the proof of [JYK21, Theorem 4.1], that is, by exploiting [SRB11,
Lemma 1], the last bound implies√

E [r2k′ ] ≤ µC1n
∑k′

k=1 δ
2
k + r1 +

(
µ2C2

1n
2
∑k′

k=1 δ
4
k

) 1
2

.

Substituting this inequality into (3.6a) for k = k′ and noting that r1 = R yields

E[r2k′+1] ≤
(

1 − µλ
2

)
E[r2k′ ] + µ2C2

1n
2δ4k′ + µC1nδ

2
k′

(
µC1n

∑k′

k=1 δ
2
k +R+

(
µ2C2

1n
2
∑k′

k=1 δ
4
k

) 1
2

)
.

Indeed, if xk /∈ W, we can replace (1 − µλ/2) by 1. Then, as δk = δ/k for all k ∈ N and as the
constant stepsize satisfies µ = 1/(2nL1), we may then use the standard zeta function inequalities,
that is, ∑J

j=1 j
−2 ≤ ζ(2) = 1

6π
2 and

∑J
j=1 j

−4 ≤ ζ(4) = 1
90π

4 ∀J ∈ N, (3.7)

to obtain

E[r2k′+1] ≤
(

1 − λ
4nL1

)
E[r2k′ ] + C2

1
δ4

4L2
1(k

′)4
+ C2

1
π2δ4

24L2
1(k

′)2
+ C1R

δ2

2L1(k′)2 + C2
1

π2δ4

4
√
90L2

1(k
′)2

(3.8)

≤
(

1 − λ
4nL1

)
E[r2k′ ] + C1R

δ2

L1
+ 3C2

1
δ4

L2
1
, (3.9)

where the last inequality follows from the elementary bounds 1
2(k′)2 < 1, 1

4(k′)4 < 1, π2

24(k′)2 < 1

and π2/(4
√

90(k′)2) < 1. As |δ| < 1, we may set C = 4n
λ (C1R+ 3C2

1/L1) to obtain

E[r2k′+1] ≤
(

1 − λ
4nL1

)
E[r2k′ ] + λ

4nL1
δ2C.

Taken together, the Lipschitz inequality (2.2) and the quadratic growth condition (1.3) imply
that λ ≤ L1, that is, one recovers (2.7) with λ taking the role of τ , which in turn ensures
that λ/(4nL1) < 1. Hence, the above inequality implies(

E[r2k′+1] − δ2C
)
≤

(
1 − λ

4nL1

) (
E([r2k′ ] − δ2C

)
.
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Then it follows that (
E[r2K ] − δ2C

)
≤

(
1 − λ

4nL1

)K−1 (
R− δ2C

)
.

The final claim follows by combining this inequality with the estimate E[f(xK)−f(x⋆)] ≤ 1
2L1E[r2K ],

which follows from the Lipschitz condition (2.3). This completes the proof for X = D. To show
that the claim remains valid when X is a non-empty closed convex subset of D, we may proceed
as in the proof of [JYK21, Theorem 4.1]. Details are again omitted for brevity.

The convergence rate as proven in [JYK21] for τ -strongly convex functions is as follows

E[f(xK) − f(x⋆)] ≤ 1
2L1

(
δ2C +

(
1 − τ

4nL1

)K−1 (
R2 − δ2C

))
, (3.10)

which is qualitatively the rate we found above cf. (3.4), yet λ took the role of τ . Recall that
we know by [JYK21, Theorem 4.1] that under the conditions of Theorem 3.5, there is a constant
C2 ≥ 0 such that

E [f(x̄K) − f(x⋆)] ≤ n
K

(√
2L1R+ C2δ

2
)2
,

for the averaged iterate x̄K = 1
K

∑K
k=1 xk. As such we sharpened their rate from sublinear to

linear.
Let us clarify when a function fails to meet the conditions of Theorem 3.5. For instance,

consider f(x) = x4, this convex real-analytic function fails to satisfy the PL condition around
x⋆ = 0. Indeed, ∂2xf(x)|x=x⋆ = 0.

Note that by our assumption X ⊆ W, Theorem 3.5 can be understood as a local or asymptotic
result. We come back to this remark in the numerical section.

4 Numerical experiments

In this section we showcase our convergence rate.

Example 4.1 (Smooth approximate ℓ1-regularization). Following [FG16], we are interested in
solving a smoothly approximated version of a ℓ1-regularized convex program. Specifically, we con-
sider the pseudo-Huber loss given by

ψθ(x) = θ

m∑
i=1

(√
1 + x2i /θ

2 − 1

)
(4.1)

and we are interested in minimizing the objective f(x) = 1
2∥Ax−b∥

2
2+λψθ(x) over x ∈ Rn for some

λ > 0 and data A ∈ Rm×n, b ∈ Rm. It follows from [FG16, Lemma 2] that L1 = λ/θ + ∥A⊤A∥2,
whereas it follows from [FG16, Lemma 6] that L2 = λ/θ2. Now, we compare Algorithm 1 to
the method proposed in [NS17]. Here we let A and b be random with unit covariance matrices
for m = 4, n = 2. Moreover, λ = θ = 10−4 and x1 = (0, 0). We show the costs f(x̄K) and
f(xk) in Figure 4.1i and Figure 4.1ii, respectively, for a decreasing smoothing parameter δ. Again,
as in [JYK21] a difference in numerical stability can be observed. More importantly, for xK we
observe a convergence rate that qualitatively matches Theorem 3.5 indeed.

At last, we consider a degenerate quadratic function, that is, a convex function that is not
strongly convex.

Example 4.2 (Degenerate quadratic function). We redo Example 4.1, but for a different objective
and with x1 = (1, 1). Let f ∈ Cω(R) be defined by f : (x1, x2) 7→ 1

2x
2
1. This function has L1 = 1.

The results are shown in Figure 4.2, again, we observe the numerical stability of the complex-step
method and additionally, the convergence rate from Theorem 3.5.
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(i) Suboptimality gap f(x̄K) − f(x⋆) for Ex-
ample 4.1.

(ii) Suboptimality gap f(xK) − f(x⋆) for Ex-
ample 4.1.

Figure 4.1: The single-point complex smoothing (CS) method (Algorithm 1.(a)) compared to the multi-
point Gaussian smoothing (GS) method from [NS17, Equation (54)] on a variety of objective functions for
a time-varying smoothing parameter δk = δ/k. For the “CS rate” we plot the sequence zK = 1

2
L1(1 −

1
4nL1

)K−1R2.

(i) Suboptimality gap f(x̄K) − f(x⋆) for Ex-
ample 4.2.

(ii) Suboptimality gap f(xK) − f(x⋆) for Ex-
ample 4.2.

Figure 4.2: The single-point complex smoothing (CS) method (Algorithm 1.(a)) compared to the multi-
point Gaussian smoothing (GS) method from [NS17, Equation (54)] on a variety of objective functions for
a time-varying smoothing parameter δk = δ/k. For the “CS rate” we plot the sequence zK = 1

2
L1(1 −

1
4nL1

)K−1R2.
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A To do

A.0.0.1 Primary goal Use (1.2), to “reconstruct” the proof of [JYK21, Theorem 5.1], but without as-
suming strong convexity, we can assume that f ∈ Cω is convex and has a Lipschitz gradient. If
needed, we can also assume that f has a Lipschitz Hessian. [I made a start, but technical details
require more care.]

[Code in folder.]
[At last, we need to understand how a trajectory {xk}k∈N under Algorithm 1 behaves. In

particular, how does |{xk ∈ W}| grow with k → +∞? As yk ∼ σ and f ∈ Cω, xk will visit every
open set of D with strictly positive probability. The only fixed point of xk+1 = xk − µkgδk(xk) for
δk → 0 is xk = x⋆ ∈ W].

A.0.0.2 Secondary goal If there is time left, can we say anything about a non-convex case?

A.0.0.3 Questions

(i) Warming up: find a convex real-analytic function that is not strongly convex? Can you do it
for n = 1? [Add to Example 1.2]

(ii) Use a power series (Taylor series) argument to show (1.2) for n = 1. This should reveal why
θ ≥ 1

2 . [Add to Example 1.1]

(iii) Develop an understanding, by means of an example of the “how local” (1.2) is.

(iv) Can we say anything about θ, C and/or W? If not, this means we only capture the conver-
gence rate regime, not the actual rate (as C is most likely unknown). [This seems to be true
only regarding C, θ can be quantified, what about W?]

(v) Show that (4.1) is not strongly convex.

(vi) Prove Lemma 3.4 (if true!). [Can we get it to be global?]

(vii) Can we do a more interesting example?

Further resources For a short explanation of how the PL condition can be exploited, see1.
The work by  Lojasiewicz2, in French. Link to the English version of [Pol63]3. The arXiv version
of [KNS16]4.

P ≡ (Σ,O,T )

1https://labs.utdallas.edu/conlab/linear-convergence-of-gradient-and-proximal-gradient-methods-under-the-
polyak-lojasiewicz-condition/

2https://perso.univ-rennes1.fr/michel.coste/Lojasiewicz.pdf
3https://www.sciencedirect.com/science/article/pii/0041555363903823?
4https://arxiv.org/pdf/1608.04636v3.pdf
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